A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons.
نویسندگان
چکیده
Breathing is maintained and controlled by a network of neurons in the brainstem that generate respiratory rhythm and provide regulatory input. Central chemoreception, the mechanism for CO(2) detection that provides an essential stimulatory input, is thought to involve neurons located near the medullary surface, whose nature is controversial. Good candidates are serotonergic medullary neurons and glutamatergic neurons in the parafacial region. Here, we show that mice bearing a mutation in Phox2b that causes congenital central hypoventilation syndrome in humans breathe irregularly, do not respond to an increase in CO(2), and die soon after birth from central apnea. They specifically lack Phox2b-expressing glutamatergic neurons located in the parafacial region, whereas other sites known or supposed to be involved in the control of breathing are anatomically normal. These data provide genetic evidence for the essential role of a specific population of medullary interneurons in driving proper breathing at birth and will be instrumental in understanding the etiopathology of congenital central hypoventilation syndrome.
منابع مشابه
CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat.
Phox2b protein is a specific marker for neurons in the parafacial region of the ventral medulla, which are proposed to play a role in central chemoreception and postnatal survival. Mutations of PHOX2B cause congenital central hypoventilation syndrome. However, there have been no reports concerning electrophysiological characteristics of these Phox2b-expressing neurons in the parafacial region o...
متن کاملCentral chemoreception is a complex system function that involves multiple brain stem sites.
CENTRAL CHEMORECEPTION refers to detection of CO2/pH within the brain and the subsequent reflex effects on breathing. It involves multiple sites within the hindbrain (9, 12, 19) as focal acidification in vivo uniquely at these sites stimulates breathing, indicating detection and chemoreflex initiation. This Viewpoint is not all inclusive but focuses on recent reports of substantial decreases in...
متن کاملDefective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons.
The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic t...
متن کاملVentilatory response to hyperoxia in newborn mice heterozygous for the transcription factor Phox2b.
Heterozygous mutations of the transcription factor PHOX2B have been found in most patients with central congenital hypoventilation syndrome, a rare disease characterized by sleep-related hypoventilation and impaired chemosensitivity to sustained hypercapnia and sustained hypoxia. PHOX2B is a master regulator of autonomic reflex pathways, including peripheral chemosensitive pathways. In the pres...
متن کاملThe 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity.
The retrotrapezoid nucleus (RTN) contains 2,000 glutamatergic neurons that innervate selectively the respiratory centers of the pontomedullary region. These cells are at the ventral medullary surface in a previously identified chemosensitive region. RTN neurons are highly sensitive to acid in vitro and vigorously activated by inputs from the carotid body and from the hypothalamus in vivo. Mutat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2008